Ремонт VANOS сегодня нецелесообразен, в большинстве случаев производится его замена.
Техцентр Мир BMW имеет значительный опыт ремонта системы VANOS на BMW с двигателями серии: M52, M54, M62, N46. Отметим, что на двигателях N52, N53, N54, N62 и N63 осуществляется только замена VANOS, в других случаях возможен ремонт, но этот момент необходимо решить с мастером, который после диагностики ДВС предложит вам оптимальное решение по устранению проблемы с Ванос вашего БМВ.
Рекомендуем следующую последовательность действий при проблемах/неиспраностях с системой VANOS:
- Промывка смазочной системы двигателя специальным очистителем для растворения отложений в масляных каналах.
- Замена моторного масла с масляным фильтром.
- Промывка соленоидов VANOS на ультразвуковом стенде.
- Промывка или замена обратных клапанов VANOS.
- Сброс адаптаций и коррекций блока управления двигателем.
- Повторная диагностика через 100 км пробега.
Этот метод позволит менее затратно устранить проблемы с VANOS. Если же ошибка останется и будет отсутствовать тяга мотора, то необходим ремонт системы Ванос, который включает: замена исполнительных узлов VANOS, цепи ГРМ, натяжителя и планок натяжителя.
Алгоритм проведения ремонта клапана:
- Снимаем регулирующую планку генератора автомобиля;
- Снимаем крепеж замочка капота машины, благодаря этому вы сможете получить доступ к осевому болтику генератора;
- Откручиваем болтик, который закрепляет клапан;
- Снимаем клапан. Только ни в коем случае не тяните за разъем, потому как он достаточно плотно прилегает к нему и на нем размещено уплотняющее кольцо.
- Снимаем фильтр системы Vvti. Представленный фильтр располагается под клапаном и имеет вид заглушки с отверстием для шестигранника.
- Если клапан и фильтр сильно загрязнены, то очищаем их при помощи специальной жидкости для очищения карбюратора;
- Проверяем работоспособность клапана, при помощи кратковременной подачи двенадцати вольт на контакты. Если вас устраивает, как он функционирует, то можете остановиться на этом этапе, если же нет, то выполняйте следующие действия.
- Ставим пометки на клапане, для того чтобы не допустить ошибку во время обратной установки;
- С помощью маленькой отвертки разбираем клапан с двух сторон;
- Достаем шток;
- Промываем и очищаем клапан;
- Если кольцо клапана деформировано, то заменяем его на новое;
- Завальцуйте внутреннюю сторону клапана. Сделать это можно при помощи полотка, надавливаниями на шток, для прижатия нового уплотняющего кольца;
- Смените масло, которое находится в катушке;
- Заменяем кольцо, которое располагается с внешней стороны;
- Завальцуйте внешнюю сторону клапана, для прижатия внешнего кольца;
- Ремонт клапана завершен и вам остается только собрать все в обратном порядке.
Процедура самостоятельной замены клапана Vvt-i
Нередко очищение и ремонт клапана не дает особы результатов и тогда возникает необходимость полной его замены. К тому же, многие автолюбители утверждают, что после проведения замены клапана транспортное средство станет работать намного лучше и затраты топлива снизятся приблизительно до десяти литров.
Следовательно, возникает вопрос: Как правильно нужно заменять клапан? Проводить замену клапана мы будем пошагово.
Итак, алгоритм замены клапана:
- Снимите регулирующую планку генератора автомобиля;
- Снимите крепеж замочка капота машины, благодаря этому вы сможете получить доступ к осевому болтику генератора;
- Откручиваем болтик, который закрепляет клапан;
- Вытаскиваем старый клапан;
- Устанавливаем новый клапан на место старого;
- Закручиваем болтик, закрепляющий клапан;
- Замена клапана завершена и вам остается только собрать все в обратном порядке.
Не нашли интересующую Вас информацию? на нашем форуме.
Проверка клапана VVTI
Не всегда при неисправностях нужна замена муфты. Проверка клапана vvti проводится элементарно. Для этого нужно лишь подать напряжение к контактам датчика в 12В. Напряжение не должно поступать длительное время, ведь клапан не может работать длительное время при низком напряжении. При подаче напряжения шток втягивается внутрь, а когда вы прекратите подавать ток, он возвращается в первоначальное положение.
Если шток будет легко перемещаться, то клапан исправно работает. Его приходится промывать и смазывать. После этого он будет стабильно функционировать. Если заметны неполадки, то стоит рассмотреть вариант ремонта или замены.
Неисправности системы изменения фаз газораспределения
Изменять фазы газораспределения можно различными способами, и последнее время наиболее распространен поворот р/валов, хотя нередко применяется метод изменения величины подъема клапанов, использование распределительных валов с кулачками измененного профиля. Периодически в газораспределительном механизме возникают различные неисправности, из-за которых мотор начинает работать с перебоями, «тупит», в некоторых случаях и вовсе не запускается. Причины возникновения неполадок могут быть разными:
- неисправен электромагнитный клапан;
- засорилась грязью муфта изменения фаз;
- вытянулась цепь газораспределительного механизма;
- неисправен натяжитель цепи.
Часто при возникающих неисправностях в этой системе:
- снижаются холостые обороты, в некоторых случаях ДВС глохнет;
- значительно увеличивается расход топлива;
- двигатель не развивает обороты, машина порой не разгоняется даже до 100 км/ч;
- мотор плохо запускается, его приходится гонять стартером несколько раз;
- слышен стрекот, идущий из муфты СИФГ.
По всем признакам основная причина проблем с двигателем – выход из строя клапана СИФГ, обычно при этом компьютерная диагностика выявляет ошибку этого устройства. Следует отметить, что лампа диагностики Check Engine загорается при этом не всегда, поэтому трудно понять, что сбои происходят именно в электронике.
Часто проблемы ГРМ возникают из-за засорения гидравлики – плохое масло с частицами абразива забивает каналы в муфте, и механизм заклинивает в одном из положений. Если муфту «клинит» в исходном положении, ДВС спокойно работает на ХХ, но совсем не развивает оборотов. В случае, когда механизм остается в положении максимального перекрытия клапанов, движок может плохо запускаться.
Как двигают фазы
У разных производителей существуют различные конструкции таких систем. Одни изменяют время подъема клапанов, другие – высоту подъема, а третьи – и то, и другое. Системы изменения фаз могут устанавливаться только для впускных клапанов или и для впускных, и для выпускных. В настоящее время используется три способа изменения фаз газораспределения.
- Первый способ – поворот распредвала по ходу вращения с ростом оборотов двигателя. Таким образом, обеспечивается более раннее открытие клапанов. Основная деталь таких систем – фазовращатель (другое название – гидроуправляемая муфта). Он представляет собой ротор, смонтированный в шкиве распредвала, между которыми есть полости. Эти полости по сигналу контроллера двигателя через электромагнитный клапан заполняются маслом, что приводит к повороту распредвала. Угол поворота зависит от того, какая именно полость заполнена. Фазовращатель в большинстве случаев устанавливается только на впускной распредвал, на некоторых системах – и на выпускной. Описанный способ используется в системах VANOS и Double VANOS от BMW, VVT-i и Dual VVT-i(Variable Valve Timing with intelligence) от Toyota, VVT(Variable Valve Timing) от Volkswagen, VTC(Variable Timing Control) от Honda, CVVT(Continuous Variable Valve Timing) от Hyundai, Kia, Volvo, General Motors, VCP(Variable Cam Phases) от Renault.
- Второй способ – применение кулачков разного профиля на разных режимах работы. На малых оборотах используются кулачки, обеспечивающие «узкие» фазы, то есть малые высоту подъема и время открытия клапанов. С ростом оборотов по команде блока управления происходит переключение на «широкофазные» кулачки. Таким образом, фазы меняются ступенчато, а не плавно, как в предыдущей системе. Зато, кроме фаз, регулируется и высота подъема клапана. Разнопрофильные кулачки используют в своих системах: VTEC (Variable Valve Timing and Lift Electronic Control) от Honda, VVTL-i (Variable Valve Timing and Lift with intelligence) от Toyota, MIVEC (Mitsubishi Innovative Valve timing Electronic Control) от Mitsubishi.
- Третья, самая совершенная группа систем, плавно регулирует высоту подъема клапанов. Главное достоинство таких систем в том, что они позволяют отказаться от дроссельной заслонки на впуске. Тем самым существенно снижаются насосные потери и расход топлива. Впервые такая система под названием Valvetroniс была применена BMW. В ней между распредвалом и клапаном расположен дополнительный рычаг, один конец которого давит на коромысло клапана, а второй соединен с эксцентриковым валом. Проворачивая этот вал с помощью электромотора, система управления тем самым меняет наклон рычага и его плечо. Увеличение плеча приводит к увеличению подъема клапана и количества воздуха, попадающего в цилиндры. Высота подъема регулируется в пределах от 0,5 до 12 мм.
Вслед за BMW аналогичные системы создали Valvematic от Toyota, VEL (Variable Valve Event and Lift System) от Nissan, MultiAir от Fiat, VTI (Variable Valve and Timing Injection) от Peugeot.
В системе MultiAir используется один распредвал, который приводит и впускные, и выпускные клапана. Но если выпускные клапана механически управляются кулачками, то на впускные воздействие от кулачков передается через специальную электрогидравлическую систему. Именно в ней и состоит новизна. Впускные кулачки нажимают на поршни, а те через электромагнитный клапан передают усилие на рабочие гидроцилиндры, которые уже воздействуют на впускные клапана. Главный узел – именно клапан, регулирующий давление в системе. Он имеет только два положения: открыт-закрыт. Если он открыт, давление в системе отсутствует, и усилие на клапан не передается. Поэтому, управляя моментом и длительностью открытия электромагнитного клапана за то время, пока кулачок воздействует на поршенек, можно добиться любого алгоритма открытия впускных клапанов. А значит, ширину фаз можно плавно регулировать от 0 до 100%. Максимальная ширина фазы определяется профилем впускного кулачка распредвала.
А какое отношение все вышеописанное имеет к экологии? Системы изменения фаз газораспределения, оптимизируя процесс сгорания топлива, тем самым снижают его расход, а, значит и количество вредных выбросов.
Что такое Двигателя VVT-i
Эта система обеспечивает оптимальный момент впуска в каждом цилиндре для данных конкретных условий работы двигателя. VVT-i практически устраняет традиционный компромисс между большим крутящим моментом на низких оборотах и большой мощностью на высоких. Также VVT-i обеспечивает большую экономию топлива и настолько эффективно снижает выбросы вредных продуктов сгорания, что отпадает необходимость в системе рециркуляции выхлопных газов.
Двигатели VVT-i устанавливаются на всех современных автомобилях Toyota. Аналогичные системы разрабатываются и применяются рядом других производителей (например, система VTEC от Honda Motors). Система VVT-i разработки Toyota заменяет предыдущую систему VVT (2-ступенчатая система управления с гидравлическим приводом), используемую с 1991 г. на 20-клапанных двигателях 4A-GE. VVT-i используется с 1996 г. и управляет моментом открытия и закрытия впускных клапанов путем изменения передачи между приводом распредвала (ремнем, шестерней или цепью) и собственно распредвалом. Для управления положением распредвала используется гидравлический привод (двигательное масло под давлением).
В 1998 г. появился Dual («двойной») VVT-i, управляющий и впускными, и выпускными клапанами (впервые устанавливался на двигателе 3S-GE на RS200 Altezza). Также двойной VVT-i используется на новых V-образных двигателях Toyota, например, на 3,5-литровом V6 2GR-FE. Такой двигатель устанавливается на Avalon, RAV4 и Camry в Европе и Америке, на Aurion в Австралии и на различных моделях в Японии, в т. ч. Estima. Двойной VVT-i будет использоваться в будущих двигателях Toyota, в том числе новом 4-цилиндровом двигателе для нового поколения Corolla. Кроме того, двойной VVT-i используется в двигателе D-4S 2GR-FSE на Lexus GS450h.
За счет изменения момента открытия клапанов пуск и стоп двигателя практически незаметны, т. к. компрессия минимальна, а катализатор очень быстро нагревается до рабочей температуры, что резко снижает вредные выбросы в атмосферу. VVTL-i (расшифровывается как Variable Valve Timing and Lift with intelligence) Основанная на VVT-i, система VVTL-i использует распредвал, обеспечивающий также регулирование величины открытия каждого клапана при работе двигателя на высоких оборотах. Это позволяет обеспечить не только более высокие обороты и большую мощность двигателя, но и оптимальный момент открытия каждого клапана, что приводит к экономии топлива.
Система разработана при сотрудничестве с компанией Yamaha. Двигатели VVTL-i устанавливаются на современных спортивных автомобилях Toyota, таких как Celica 190 (GTS). В 1998 г. Toyota начала предлагать новую технологию VVTL-i для двухраспредвального 16-клапанного двигателя 2ZZ-GE (один распредвал управляет впускными, а другой выпускными клапанами). На каждом распредвале имеется по два кулачка на цилиндр: один для низких оборотов, а другой для высоких (с большим открытием). На каждом цилиндре – два впускных и два выпускных клапана, и каждая пара клапанов приводится в движение одним качающимся рычагом, на который воздействует кулачок распредвала. На каждом рычаге есть подпружиненный скользящий толкатель (пружина позволяет толкателю свободно скользить по «высокооборотному» кулачку, не воздействуя при этом на клапаны). Когда частота вращения вала двигателя ниже 6000 об./м, на качающийся рычаг воздействует «низкооборотный кулачок» через обычный роликовый толкатель (см. рис.). Когда же частота превышает 6000 об./м, компьютер управления двигателем открывает клапан, и давление масла сдвигает шпильку под каждым скользящим толкателем. Шпилька подпирает скользящий толкатель, в результате чего он уже не движется свободно на своей пружине, а начинает передавать качающемуся рычагу воздействие от «высокооборотного» кулачка, и клапаны открываются больше и на большее время.
Для чего нужны фазовращатели — DRIVE2
Чтобы это понять что такое фазовращатели и зачем они нужны, прочтите для начала полезную информацию. Все дело в том, что двигатель работает не одинаково на различных оборотах. Для холостых и не высоких оборотов идеальными будут «узкие фазы», а для высоких – «широкие».
Узкие фазы – если коленчатый вал вращается «медленно» (холостой ход), то объем и скорость отвода отработанных газов также невелики. Именно здесь идеально применять «узкие» фазы, а также минимальное «перекрытие» (время одновременного открытия впускных и выпускных клапанов) – новая смесь не проталкивается в выпускной коллектор, через открытый выпускной клапан, но и соответственно отработанные газы (почти) не проходят во впускной. Это идеальное сочетание. Если же сделать «фазирование» — шире, именно при невысоких вращениях коленчатого вала, то «отработка» может смешаться с поступающими новыми газами, снизив тем самым ее качественные показатели, что однозначно снизит мощность (мотор станет неустойчиво работать или даже заглохнет).
Широкие фазы – когда обороты растут, соответственно растет и объем и скорость перекачиваемых газов
Здесь уже важно быстрее продувать цилиндры (от отработки) и быстрее загонять в них поступающую смесь, фазы должны быть «широкими»
Конечно же руководит открытиями обычный распределительный вал, а именно его «кулачки» (своеобразные эксцентрики), у него есть два конца – один как бы острый, он выделяется, другой просто сделан полукругом. Если конец острый — то происходит максимальное открытие, если округлый (с другой стороны) – максимальное закрытие.НО у штатных распределительных валов – НЕТ регулировки фаз, то есть они их не могут расширить или сделать уже, все же инженеры задают усредненные показатели – что-то среднее между мощностью и экономичностью. Если завалить валы в одну из сторон, то эффективность, либо экономичность двигателя упадет. «Узкие» фазы, не дадут ДВС развивать максимальную мощность, а вот «широкие» — не буде нормально работать на малых оборотах.
Вот бы регулировать в зависимости от оборотов! Это и было изобретено – по сути это и есть система регулирования фаз, ПО ПРОСТОМУ — ФАЗОВРАЩАТЕЛИ.Принцип работы
Сейчас не будем лезть вглубь, наша задача понять, как они работают. Собственно обычный распредвал на конце имеет распределительную шестерню, которая в свою очередь соединяется с ремнем или цепью ГРМ.
Распредвал с фазовращателем на конце имеет немного другую, измененную конструкцию. Здесь располагаются две «гидро» или электроуправляемые муфты, которые с одной стороны также зацепляются за привод ГРМ, а с другой стороны с валами. Под воздействием гидравлики или электроники (есть специальные механизмы) внутри этой муфты могут происходить сдвиги, таким образом, она может немного поворачиваться, тем самым меняя открытие или закрытие клапанов.Нужно отметить, что не всегда фазовращатель устанавливается на два распредвала сразу, бывает что один находится на впускном или на выпускном, а на втором просто обычная шестерня.
Как обычно процессом руководит ЭБУ, которая собирает данные с различных датчиков двигателя, таких как положения коленчатого вала, холла, частота вращения двигателя, скорости и т.д.
Сейчас я вам предлагаю рассмотреть основные конструкции, таких механизмов (думаю так у вас больше проясниться в голове).
«Питер — АТ»
ИНН 780703320484
ОГРНИП 313784720500453
Sato80 › Блог › Клапан VVT-i что это и для чего нужен.
При обслуживании своей демки столкнулся с клапаном (VVT-i) выкладываю интересную статейку может кому будет интересно освежить свои знания. Сам пока не лазил не смотрел что за «зверёк» но планирую и вылажу фотоотчёт. При неисправности клапана симптомы следующие: ✓ на холостых держатся высокие обороты ≈ 2 тысячи; ✓ при включении передачи — обороты падают до 200-300; ✓ при кратковременном нажатии на газ — глохнет; ✓ все эти глюки появляются на прогретом моторе, а на холодную не бывает проблем.
Более подробно как всё это работает можно найти в этой статье. Рассмотрим здесь принцип функционирования системы VVT-i второго поколения, которая применяется сейчас на большинстве двигателей.
Система VVT-i (Variable Valve Timing intelligent — изменения фаз газораспределения) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала).
В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).
Исполнительный механизм VVT-i размещен в шкиве распределительного вала — корпус привода соединен со звездочкой или зубчатым шкивом, ротор — с распредвалом. Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться. Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов).
Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).
Управление VVT-i осуществляется при помощи клапана VVT-i (OCV — Oil Control Valve). По сигналу блока управления электромагнит через плунжер перемещает основной золотник, перепуская масло в том или ином направлении. Когда двигатель заглушен, золотник перемещается пружиной таким образом, чтобы установился максимальный угол задержки.
Для поворота распределительного вала масло под давлением при помощи золотника направляется к одной из сторон лепестков ротора, одновременно открывается на слив полость с другой стороны лепестка. После того, как блок управления определяет, что распредвал занял требуемое положение, оба канала к шкиву перекрываются и он удерживается в фиксированном положении.
При повороте распредвала в сторону более раннего открытия клапанов
При повороте распредвала в сторону более позднего открытия клапанов
В режиме удержания Функционирование системы VVT-i определяется условиями работы двигателя на различных режимах.
Приведенный выше 4-лепестковый ротор позволяет изменять фазы в пределах 40° (как, например, на двигателях серий ZZ и AZ), но если требуется увеличить угол поворота (до 60° у SZ) — применяется 3-лепестковый или расширяются рабочие полости. Принцип действия и режимы работы этих механизмов абсолютно аналогичны, разве что за счет расширенного диапазона регулировки становится возможным вообще исключить перекрытие клапанов на холостом ходу, при низкой температуре или запуске.
Евгений Е., Москва (с) «Легион-Автодата»
Источник
Для чего необходима система изменения фаз газораспределения
Для достижения наибольшей эффективности применительно к динамично изменяющимся режимам работы ДВС необходима различная величина фаз газораспределения. В режиме холостого хода наиболее рациональными становятся «узкие» фазы газораспределения, под которыми понимается позднее открытие и ранее закрытие клапанов. При этом исключается перекрытие фаз, под которым понимается время одновременного открытия впускного и выпускного клапана. Это необходимо для того, чтобы исключить попадание выхлопных газов во впуск и выброс топливно-воздушной смеси в выпускной коллектор.
Выход мотора на режим максимальной мощности означает повышение оборотов, так как распредвал крутится быстрее и время открытия клапанов сокращается. Для того чтобы не терялась мощность и крутящий момент на высоких оборотах сохранялся, в двигатель должно поступать намного больше топливно-воздушной смеси, а выпуск отработавших газов должен быть реализован максимально эффективно. Задача решается путем раннего открытия клапанов и увеличения времени их открытия, делая фазу «широкой». Фаза перекрытия также расширяется до максимума с ростом оборотов, что необходимо для качественной продувки цилиндров.
Если мотор работает на низких оборотах, нужны максимально короткие фазы газораспределения. Это означает, что время открытия клапанов должно быть минимальным по продолжительности, обеспечивая так называемые «узкие» фазы. Высокие обороты двигателя требуют полной противоположности в виде «широких» фаз газораспределения. Время открытия клапана должно быть увеличено до максимума, параллельно обеспечивая такты впуска и выпуска, а также эффективное перекрытие.
Сам кулачок распредвала имеет форму, которая способна обеспечить как реализацию узкой, так и широкой фазы. Проблема заключается в том, что фиксированная форма кулачка не позволяет одновременно добиться узких и широких фаз газораспределения. Получается, форма кулачка подобрана с расчетом на возможный оптимальный баланс между высоким показателем крутящего момента на низких оборотах ДВС и максимальной мощностью агрегата в режиме высокой частоты вращения коленчатого вала. Система изменения фаз газораспределения позволяет намного более гибко изменять эти параметры, буквально «подстраивая» ГРМ под конкретный режим работы двигателя для достижения лучшей отдачи от мотора и топливной экономичности.
Системы изменения фаз газораспределения представлены несколькими видами. Главные отличия заключаются в тех и или иных параметрах регулировки ГРМ в процессе его работы. Сегодня используются следующие решения для управления фазами газораспределения:
- система поворота распредвала;
- кулачки распредвала с различным профилем;
- система изменения высоты подъема клапанов;
Управление фазами газораспределения по-японски
Начнём с расшифровки.
Аббревиатура VVT-i звучит на языке оригинала как Variable Valve Timing intelligent, что переводим как интеллектуальное изменение фаз газораспределения.
Впервые на рынке эта технология представлена компанией Toyota десять лет назад, в 1996 году. Аналогичные системы есть у всех автоконцернов и брендов, что говорит об их пользе. Называются они, правда, все по-разному, путая рядовых автолюбителей.
Что же привнесла VVT-i в моторостроение? В первую очередь – повышение мощности, равномерной во всём диапазоне оборотов. Моторы стали экономичнее, а следовательно более эффективнее.
Управление фазами газораспределения или управление моментом поднятия и опускания клапанов, происходит при помощи поворота на нужный угол распределительного вала.
Как это реализовано технически, рассмотрим далее.
Возможные причины неисправности клапана
Основных причин неисправностей клапана не так уж и много. Можно выделить две, которые встречаются особенно часто. Так, VVTI-клапан может выходить из строя по причине того, что есть обрывы в катушке. В данном случае элемент не сможет верно реагировать на передачи напряжения. Диагностика неисправности легко осуществляется при помощи проверки измерения сопротивления обмотки катушки датчика.
Но самые важные изменения касаются семинаров по пластмассам и сборке. На семинаре «Пластмассы» появление новых моделей затрагивает большинство станций, которые получают новые формы и множество новых инструментов и оборудования. Ничто не ускользнуло: ему даже пришлось переписать Стандартизированные процедуры, основу нашего метода производства. Необходимо было заменить специализированное оборудование и удвоить количество обрабатываемых деталей.
Задача важна, поскольку каждый оператор должен быть одинаково компетентен в каждом варианте двух моделей. Поскольку транспортные средства производятся в соответствии с зарегистрированными заказами, они не проходят в серийной цепочке: это единая производственная линия, но с сильными изменениями продукта.
Вторая причина, по которой клапан VVTI (Toyota) работает неправильно или же не работает вообще — это заедания в штоке. Причиной таких заеданий может быть банальная грязь, которая со временем скопилась в канале. Также возможно, деформирована уплотняющая резинка внутри клапана. В этом случае восстановить механизм очень просто — достаточно очистить грязь оттуда. Это можно сделать с помощью отмачивания или вымачивания элемента в специальных жидкостях.
Реле контроля фаз Шнайдер
Компания Schneider (Шнайдер) считается одним из лучших производителей устройств в сфере электроэнергетики. Изделия этого предприятия активно применяются как на гражданских объектах, так и в крупных промышленных организациях.
Преимущества товаров предприятия заключаются в гибкой ценовой политике высоком качестве и специальных условий для покупателей.
Компания производит автоматические выключатели, предохранители, выключатели нагрузки и щитовое оборудование.
Кроме того, на заводе Schneider выпускаются реле, рубильники, розетки, контакторы и многие другие устройства.
К популярным моделям можно отнести реле:
- Контроля 1-фазного напряжения (от 65 до 260 В и временной выдержкой от 0,1 до 10 с — RM17UBE
- Контроля 3-фазного напряжения (от 208 до 480 В) — RM17TE
- Контроля 1-фазного напряжения (от 160 до 280 В, 30-секундная задержка) — EZ9C
- Контроля 3-фазного напряжения (от 208 до 480 В) — RM17TT00 и другие.
Как проверить фазорегулятор
Существует один простой метод, как можно проверить, работает фазорегулятор в двигателе или нет. Для этого необходимы лишь два тонких провода длиной около полутора метров. Суть проверки заключается в следующем:
Снять штекер с разъема клапана подачи масла в фазорегулятор и подключить туда подготовленные проводки.
Второй конец одного из проводов нужно подсоединить на одну из клемм аккумулятора (полярность в данном случае неважна).
Второй конец второго провода оставить пока в подвешенном состоянии.
Запустить двигатель на холодную и оставить работать на холостых оборотах
Важно, чтобы масло в движке было остывшим!
Подключить конец второго провода ко второй клемме аккумулятора.
Если двигатель после этого начинает «задыхаться», значит, фазорегулятор работает, в противном случае — нет!. Электромагнитный клапан фазорегулятора необходимо проверять по следующему алгоритму:
Электромагнитный клапан фазорегулятора необходимо проверять по следующему алгоритму:
- Выбрав на тестере режим измерение сопротивления, замерьте его между выводами клапана. Если ориентироваться на данные руководства Меган 2, то при температуре воздуха +20°С оно должно находиться в пределах 6,7…7,7 Ом.
- Если сопротивление ниже — значит, имеет место замыкание, если больше — обрыв. В любом случае клапана не ремонтируют, а меняют на новые.
Измерение сопротивления можно выполнить и без демонтажа, однако нужно проверить и механическую составляющую клапана. Для этого понадобится:
- От источника питания 12 Вольт (АКБ авто) подайте напряжение дополнительными проводками на электрический разъем клапана.
- Если клапан исправен и чист, то при этом его поршень выдвинется вниз. Если напряжение убрать — шток должен вернуться в исходное положение.
- Далее нужно проверить зазор в крайних выдвинутых положениях. Он должен быть не более 0,8 мм (можно воспользоваться металлическим щупом для проверки зазоров клапанов). Если он меньше, то клапан нужно прочистить по описанному выше алгоритму.После выполнения чистки электрическую и механическую проверки следует, а затем принимать решение о замене. повторить.
Чтобы «продлить жизнь» фазорегулятору и его электромагнитному клапану рекомендуется чаще менять масло и масляные фильтра. Особенно, если машина эксплуатируется в тяжелых условиях.
Ошибка фазорегулятора
В случае, если на Рено Меган 2 в блоке управления сформировалась ошибка DF080 (цепь изменения характеристики распределительного вала, обрыв цепи), то нужно в первую очередь проверить клапан по приведенному выше алгоритму. Если он работает нормально, то в таком случае необходимо «прозвонить» по цепи провода от фишки клапана до электронного блока управления.
Чаще всего проблемы возникают в двух местах. Первое — в жгуте проводов, которые идут с самого двигателя на блок управления двигателем. Второе — в самом разъеме. Если проводка целая, то смотрите разъем. Со временем пины на них разжимаются. Чтобы их поджать нужно выполнить следующие действия:
- снять пластиковый держатель с разъема (сдернуть вверх);
- после этого появится доступ к внутренним контактам;
- аналогично нужно демонтировать заднюю часть корпуса держателя;
- после этого поочередно достать через заднюю часть один и второй сигнальный провод (действовать лучше по очереди, чтобы не перепутать распиновку);
- на освободившейся клемме необходимо при помощи какого-то острого предмета нужно поджать клеммы;
- собрать все в исходное положение.
Система на основе гидроуправляемой муфты
Широкое распространение получили системы изменения фаз газораспределения, принцип работы которых основан на осуществлении поворота распредвала. К таким схемам управления фазами газораспределения относят: японскую систему VVT-i, Dual VVT-i, решение немецкого концерна BMW под названием VANOS, Double VANOS, схему VVT от Volkswagen, управление фазами газораспределения VTEC от Honda, систему CVVT брендов Hyundai, Kia и концерна GM, регулировку фаз VCP от Renault и т.д.
Работа указанных выше систем основывается на небольшом повороте распредвала по ходу его вращения. Такой способ позволяет добиться раннего открытия клапанов сравнительно с их базовым начальным положением. Данный тип систем изменения фаз газораспределения конструктивно состоит из специальной муфты, которая управляется гидравлическим способом, а также дополнительной системы управления указанной муфтой. Гидроуправляемая муфта среди автомехаников получила название фазовращатель.
Поворот распредвала осуществляется при помощи электроники управления и гидравлики, а сама система чаще всего затрагивает только впускные клапаны. Рост оборотов ДВС приводит к тому, что фазовращатель осуществляет проворот распредвала по ходу его вращения, впускные клапана открываются раньше и цилиндры намного более эффективно наполняются рабочей смесью в режиме высоких оборотов.
Получается, гидроуправляемая муфта реализует поворот распредвала ГРМ. Данная муфта конструктивно включает в себя:
- ротор, который соединен с распредвалом;
- корпус, которым выступает шкив привода распредвала;
В определенные полости, которые расположены между ротором и корпусом-шкивом, попадает моторное масло из системы смазки ДВС. Масло в муфту подается по особым каналам. Когда моторное масло заполняет одну или другую полость муфты, осуществляется поворот ротора по отношению к корпусу. Этот поворот ротора означает, что и распределительный вал будет повернут на необходимый угол.
Чаще всего местом установки гидроуправляемой муфты становится привод того распределительного вала, который отвечает за работу впускных клапанов. Встречаются также конструкции ДВС, когда подобные муфты-фазовращатели стоят как на впускном распредвале, так и на выпускном. Данное решение позволяет шире и эффективнее регулировать параметры работы ГРМ на впуске и выпуске, но усложняет механизм.
Электронное управление автоматически регулирует работу гидроуправляемой муфты. Система такого управления включает в себя:
- группу входных датчиков;
- электронный блок управления;
- список исполнительных устройств;
Система управления получает показания от датчика Холла, который производит оценку положения распредвалов. Дополнительно задействованы и другие датчики, которые используются ЭБУ для управления работой всего двигателя.
К таковым относят датчик, измеряющий частоту вращения коленвала, температурный датчик охлаждающей жидкости (ОЖ), датчик расхода воздуха и другие. Сигналы от этих датчиков подаются в ЭБУ, который после отправляет соответствующий сигнал на специальное управляющее (исполнительное) устройство.
Таким устройством, на которое воздействует электронный блок управления двигателем, является электромагнитный клапан (электрогидравлический распределитель). Клапан представляет собой распределитель, который при необходимости открывает доступ потоку моторного масла к гидроуправляемой муфте, а также реализует отвод масла от фазовращателя. Это зависит от того, в каком режиме работает силовой агрегат.
Данная схема изменения фаз газораспределения с использованием муфты задействуется в момент работы двигателя на холостом ходу, (мотор работает на самых низких оборотах), в режиме максимальной мощности на высоких оборотах, а также в том режиме, когда осуществлен выход ДВС на максимум крутящего момента.